<u>Topic 8a – Alkanes</u> <u>Revision Notes</u>

1) <u>General</u>

Alkanes are saturated hydrocarbons with general formula C_nH_{2n+2}

- Saturated = only single C-C bonds
- Hydrocarbon = contains C and H <u>only</u>

C-H bonds are non-polar (C and H have similar electronegativities) so:

- o The only intermolecular forces in alkanes are Van der Waal's forces
- o Alkanes do not attract charged species (nucleophiles and electrophiles)

In alkanes, the bonds round each carbon are tetrahedral in shape. Each C has 4 bond pairs in its outer shell which repel each other and get as far apart as possible.

2) <u>Boiling points</u>

- Boiling point increases with chain length more electrons, more Van der Waal's forces
- Boiling point decreases as branching increases branched alkanes have less surface area in contact so intermolecular forces are weaker (or straighter chains can pack closer, more Van der Waal's forces)

3) <u>Reactions</u>

a) Combustion

- Reaction with oxygen producing CO₂ and H₂O
- Exothermic (produces heat)
- Gas volume increases (used to drive pistons in engines)
- Alkanes are used as fuels in industry, in the home and in transport

b) Substitution

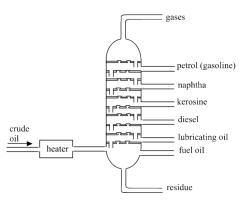
• H replaced by CI or Br e.g.

$CH_4 + Br_2 \rightarrow CH_3Br + HBr$

- Requires u/v light to break Br-Br bond
- The bond breaking is homolytic fission because two radicals are produced, each having an unpaired electron
- A mechanism shows the detailed steps by which the reactants turn into the products
- The mechanism here is called radical substitution

Initiation step	e.g.	$Br_2 \rightarrow 2Br \bullet$		
Propagation	e.g.	$CH_4 + Br \bullet \rightarrow \bullet CH_3 + HBr$	}	as a
		$\bullet CH_3 + Br_2 \rightarrow CH_3Br + Br \bullet$	}	pair
Termination step	e.g.	$2 \bullet CH_3 \rightarrow CH_3 CH_3$		

• Further substitution can occur with more H's being replaced by Br's


$CH_3Br + Br_2 \rightarrow CH_2Br_2 + HBr \text{ etc}$

• The reaction produces a mixture of products (CH₃Br, CH₂Br₂, CHBr₃ and CBr₄). This means that radical substitution is not a good way of making a particular product (the reaction has limited use in synthesis – which means making a desired product in a number of steps)

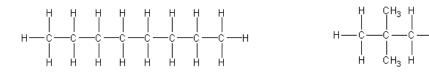
Topic 8b – Fuels Revision Notes

1) <u>Fractional Distillation</u>

- Crude oil is a mixture of many compounds, most of which are alkanes.
- Crude oil is separated into fractions, many of which can be used directly as fuels.
- The separation process is called fractional distillation. This involves:
 - o Vaporising the crude oil
 - Passing the vapour into a column that is hot at the bottom and cool at the top
 - o The vapour rising and condensing at the appropriate level
 - o Separation is based on the different boiling points of alkanes

2) <u>Processing of fractions</u>

a) Cracking

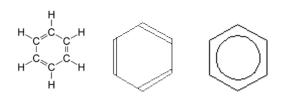

- Crude oil contains no alkenes and more long chain alkanes than are needed.
- Cracking converts long chain alkanes into shorter chain alkanes and an alkene e.g.

$$\mathsf{C}_{11}\mathsf{H}_{24}\to\mathsf{C}_8\mathsf{H}_{18}+\mathsf{C}_3\mathsf{H}_6$$

- Cracking requires heat and a catalyst. It is a thermal decomposition reaction.
- The alkenes from cracking are used to make polymers and alcohols

b) Isomerisation

• Isomerisation turns straight chain alkanes into branched chain alkanes e.g. Octane \rightarrow 2,2,4-trimethylpentane


- Branched chain hydrocarbons make better fuels as their lower boiling points mean they burn more efficiently
- Isomerisation increases the octane number of the hydrocarbon
- It needs a catalyst and heat

c) Reforming

• Reforming turns straight chain alkanes into cyclic alkanes and arenes (and hydrogen) e.g.

C6H14 →	C ₆ H ₁₂ + H ₂
Hexane	cyclohexane
C6H14 →	C6H6 + 4H₂
Hexane	benzene

• Arenes contain a benzene ring (see A2 - Topic 1). Benzene can be represented in several ways. The third one will make more sense next year:

- Arenes make better fuels than straight chain alkanes as they have higher octane numbers and burn more efficiently
- Reforming needs heat and a catalyst

3) Fossil fuels and biofuels

- Fossil fuels (coal, gas and oil) are very useful to us as sources of energy and as a feedstock for making petrochemicals
- However, they are non-renewable as they take millions of years to form and increased CO₂ levels from burning fossil fuels are leading to global warming and climate change
- We will eventually need to replace fossil fuels with renewable energy sources such as biofuels e.g. alcohol made from sugar cane and biodiesel made from grain
- Biofuels are renewable as plant material takes only a short time to grow